The Bachelor's thesis - Design and implementation of a portable device for creating RFID tag lists
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

277 lines
8.9 KiB

/* Arduino FAT16 Library
* Copyright (C) 2008 by William Greiman
*
* This file is part of the Arduino FAT16 Library
*
* This Library is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This Library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with the Arduino Fat16 Library. If not, see
* <http://www.gnu.org/licenses/>.
*/
#include <avr/pgmspace.h>
#include <Arduino.h>
#include <Fat16Config.h>
#include <SdCard.h>
//------------------------------------------------------------------------------
// r1 status values
uint8_t const R1_READY_STATE = 0;
uint8_t const R1_IDLE_STATE = 1;
// start data token for read or write
uint8_t const DATA_START_BLOCK = 0XFE;
// data response tokens for write block
uint8_t const DATA_RES_MASK = 0X1F;
uint8_t const DATA_RES_ACCEPTED = 0X05;
uint8_t const DATA_RES_CRC_ERROR = 0X0B;
uint8_t const DATA_RES_WRITE_ERROR = 0X0D;
//
// stop compiler from inlining where speed optimization is not required
#define STATIC_NOINLINE static __attribute__((noinline))
//------------------------------------------------------------------------------
// SPI static functions
//
// clock byte in
STATIC_NOINLINE uint8_t spiRec(void) {
SPDR = 0xff;
while (!(SPSR & (1 << SPIF)));
return SPDR;
}
// clock byte out
STATIC_NOINLINE void spiSend(uint8_t b) {
SPDR = b;
while (!(SPSR & (1 << SPIF)));
}
//------------------------------------------------------------------------------
// wait for card to go not busy
// return false if timeout
static uint8_t waitForToken(uint8_t token, uint16_t timeoutMillis) {
uint16_t t0 = millis();
while (spiRec() != token) {
if (((uint16_t)millis() - t0) > timeoutMillis) return false;
}
return true;
}
//------------------------------------------------------------------------------
uint8_t SdCard::cardCommand(uint8_t cmd, uint32_t arg) {
uint8_t r1;
// select card
chipSelectLow();
// wait if busy
waitForToken(0XFF, SD_COMMAND_TIMEOUT);
// send command
spiSend(cmd | 0x40);
// send argument
for (int8_t s = 24; s >= 0; s -= 8) spiSend(arg >> s);
// send CRC - must send valid CRC for CMD0
spiSend(cmd == CMD0 ? 0x95 : 0XFF);
// wait for not busy
for (uint8_t retry = 0; (0X80 & (r1 = spiRec())) && retry != 0XFF; retry++);
return r1;
}
//------------------------------------------------------------------------------
uint8_t SdCard::cardAcmd(uint8_t cmd, uint32_t arg) {
cardCommand(CMD55, 0);
return cardCommand(cmd, arg);
}
//==============================================================================
// SdCard member functions
//------------------------------------------------------------------------------
/**
* Determine the size of a standard SD flash memory card
* \return The number of 512 byte data blocks in the card
*/
uint32_t SdCard::cardSize(void) {
uint16_t c_size;
csd_t csd;
if (!readReg(CMD9, &csd)) return 0;
uint8_t read_bl_len = csd.read_bl_len;
c_size = (csd.c_size_high << 10) | (csd.c_size_mid << 2) | csd.c_size_low;
uint8_t c_size_mult = (csd.c_size_mult_high << 1) | csd.c_size_mult_low;
return (uint32_t)(c_size+1) << (c_size_mult + read_bl_len - 7);
}
//------------------------------------------------------------------------------
void SdCard::chipSelectHigh(void) {
digitalWrite(chipSelectPin_, HIGH);
// make sure MISO goes high impedance
spiSend(0XFF);
}
//------------------------------------------------------------------------------
void SdCard::chipSelectLow(void) {
// Enable SPI, Master, clock rate F_CPU/4
SPCR = (1 << SPE) | (1 << MSTR);
// Doubled Clock Frequency to F_CPU/2 unless speed_ is nonzero
if (!speed_) SPSR |= (1 << SPI2X);
digitalWrite(chipSelectPin_, LOW);
}
//------------------------------------------------------------------------------
void SdCard::error(uint8_t code, uint8_t data) {
errorData = data;
error(code);
}
//------------------------------------------------------------------------------
void SdCard::error(uint8_t code) {
errorCode = code;
chipSelectHigh();
}
//------------------------------------------------------------------------------
/**
* Initialize a SD flash memory card.
*
* \param[in] speed Set SPI Frequency to F_CPU/2 if speed = 0 or F_CPU/4
* if speed = 1.
* \param[in] chipSelectPin SD chip select pin number.
*
* \return The value one, true, is returned for success and
* the value zero, false, is returned for failure.
*
*/
uint8_t SdCard::init(uint8_t speed, uint8_t chipSelectPin) {
if (speed > 1) {
error(SD_ERROR_SPI_SPEED);
return false;
}
speed_ = speed;
chipSelectPin_ = chipSelectPin;
errorCode = 0;
uint8_t r;
// 16-bit init start time allows over a minute
uint16_t t0 = (uint16_t)millis();
pinMode(chipSelectPin_, OUTPUT);
digitalWrite(chipSelectPin_, HIGH);
pinMode(SPI_MISO_PIN, INPUT);
pinMode(SPI_SS_PIN, OUTPUT);
pinMode(SPI_MOSI_PIN, OUTPUT);
pinMode(SPI_SCK_PIN, OUTPUT);
// Enable SPI, Master, clock rate F_CPU/128
SPCR = (1 << SPE) | (1 << MSTR) | (1 << SPR1) | (1 << SPR0);
// must supply min of 74 clock cycles with CS high.
for (uint8_t i = 0; i < 10; i++) spiSend(0XFF);
digitalWrite(chipSelectPin_, LOW);
// command to go idle in SPI mode
while ((r = cardCommand(CMD0, 0)) != R1_IDLE_STATE) {
if (((uint16_t)millis() - t0) > SD_INIT_TIMEOUT) {
error(SD_ERROR_CMD0, r);
return false;
}
}
// start initialization and wait for completed initialization
while ((r = cardAcmd(ACMD41, 0)) != R1_READY_STATE) {
if (((uint16_t)millis() - t0) > SD_INIT_TIMEOUT) {
error(SD_ERROR_ACMD41, r);
return false;
}
}
chipSelectHigh();
return true;
}
//------------------------------------------------------------------------------
/**
* Reads a 512 byte block from a storage device.
*
* \param[in] blockNumber Logical block to be read.
* \param[out] dst Pointer to the location that will receive the data.
* \return The value one, true, is returned for success and
* the value zero, false, is returned for failure.
*/
uint8_t SdCard::readBlock(uint32_t blockNumber, uint8_t* dst) {
if (cardCommand(CMD17, blockNumber << 9)) {
error(SD_ERROR_CMD17);
return false;
}
return readTransfer(dst, 512);
}
//------------------------------------------------------------------------------
uint8_t SdCard::readReg(uint8_t cmd, void* buf) {
uint8_t* dst = reinterpret_cast<uint8_t*>(buf);
if (cardCommand(cmd, 0)) {
chipSelectHigh();
return false;
}
return readTransfer(dst, 16);
}
//------------------------------------------------------------------------------
uint8_t SdCard::readTransfer(uint8_t* dst, uint16_t count) {
// wait for start of data
if (!waitForToken(DATA_START_BLOCK, SD_READ_TIMEOUT)) {
error(SD_ERROR_READ_TIMEOUT);
}
// start first spi transfer
SPDR = 0XFF;
for (uint16_t i = 0; i < count; i++) {
while (!(SPSR & (1 << SPIF)));
dst[i] = SPDR;
SPDR = 0XFF;
}
// wait for first CRC byte
while (!(SPSR & (1 << SPIF)));
spiRec(); // second CRC byte
chipSelectHigh();
return true;
}
//------------------------------------------------------------------------------
/**
* Writes a 512 byte block to a storage device.
*
* \param[in] blockNumber Logical block to be written.
* \param[in] src Pointer to the location of the data to be written.
* \return The value one, true, is returned for success and
* the value zero, false, is returned for failure.
*/
uint8_t SdCard::writeBlock(uint32_t blockNumber, const uint8_t* src) {
uint32_t address = blockNumber << 9;
#if SD_PROTECT_BLOCK_ZERO
// don't allow write to first block
if (address == 0) {
error(SD_ERROR_BLOCK_ZERO_WRITE);
return false;
}
#endif // SD_PROTECT_BLOCK_ZERO
if (cardCommand(CMD24, address)) {
error(SD_ERROR_CMD24);
return false;
}
// optimize write loop
SPDR = DATA_START_BLOCK;
for (uint16_t i = 0; i < 512; i++) {
while (!(SPSR & (1 << SPIF)));
SPDR = src[i];
}
while (!(SPSR & (1 << SPIF))); // wait for last data byte
spiSend(0xFF); // dummy crc
spiSend(0xFF); // dummy crc
// get write response
uint8_t r1 = spiRec();
if ((r1 & DATA_RES_MASK) != DATA_RES_ACCEPTED) {
error(SD_ERROR_WRITE_RESPONSE, r1);
return false;
}
// wait for card to complete write programming
if (!waitForToken(0XFF, SD_WRITE_TIMEOUT)) {
error(SD_ERROR_WRITE_TIMEOUT);
}
chipSelectHigh();
return true;
}