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I. INTRODUCTION

THIS this paper is intended to sum up the research done
in order to understand the Dynamics in electrical systems

and their underlying differential equations.
June 03, 2015

II. DYNAMICAL SYSTEMS

Dynamical systems are mathematical objects used to model
physical phenomena whose state (or instantaneous descrip-
tion) changes over time. These models are used in financial
and economic forecasting, environmental modeling, medical
diagnosis, industrial equipment diagnosis, and a host of other
applications.

For the most part, applications fall into three broad cate-
gories: predictive (also referred to as generative), in which
the objective is to predict future states of the system from
observations of the past and present states of the system,
diagnostic, in which the objective is to infer what possible
past states of the system might have led to the present state
of the system (or observations leading up to the present
state), and, finally, applications in which the objective is
neither to predict the future nor explain the past but rather
to provide a theory for the physical phenomena. These three
categories correspond roughly to the need to predict, explain,
and understand physical phenomena.

A. Differential Equations

A differential equation is any equation which contains
derivatives, either ordinary derivatives or partial derivatives.
Almost every physical situation that occurs in nature can be
described with an appropriate differential equation.

The process of describing a physical situation with a differ-
ential equation is called modeling.

Differential equations are generally concerned about three
questions:

1) Given a differential equation will a solution exist?
2) If a differential equation does have a solution how many

solutions are there?
3) If a differential equation does have a solution can we

find it?

There are two types of differential equations. Ordinary
differential equations (PDE) and Partial differential equations.
Our study won’t go into further detail about PDE and will stay
focused mainly on ODE.

B. Direction Field

Understanding direction fields (or slope fields) and what
they tell us about a differential equation and its solution is
important and can be introduced without any knowledge of
how to solve a differential equation and so can be done before
the getting to actually solving them.

The direction fields are important because they can provide
a sketch of solution, if exist, and a long term behavior - most
of the time we are interested in general picture about what is
happening, as the time passes.

C. Laplace Transform

The Laplace transform is an integral transform perhaps
second only to the Fourier transform in its utility in solving
physical problems. The Laplace transform (1) is particularly
useful in solving linear ordinary differential equations such as
those arising in the analysis of electronic circuits. The Laplace
transform L

L[f(t)](s) =

∫
0∞f(t)e−stdt (1)

where f(t) is defined for t ≤ 0 - this is it’s most common
form and is called unilateral.

Most important properties of Laplace transform is that
differentiation and integration become multiplication and di-
vision. The transform turns integral equations and differential
equations to polynomial equations, which are much easier
to solve. Once solved, use of the inverse Laplace transform
reverts to the time domain.

III. PERIODIC ORBITS

A periodic orbit corresponds to a special type of solution
for a dynamical system, namely one which repeats itself in
time. A dynamical system exhibiting a stable periodic orbit is
often called an oscillator.

A. Limit Cycle

A limit cycle is an isolated closed trajectory. Isolated means
that neighboring trajectories are not closed - they spiral either
towards or away from the limit cycle. The particle on the limit



PAPER FOR MODELING COURSE, JUNE 2015 2

Fig. 1. Stable limit cycle. Trajectories spiral towards it.

cycle, appears after one period on the exact same spot. Limit
cycle appears on on a plane, opposed to a periodic orbit, that
happens to be a vector.

If all neighboring trajectories approach the limit cycle,
we say the limit cycle is stable or attracting, as shown on
fig. 1. Otherwise the limit cycle is unstable, or in exceptional
cases, half-stable. Stable limit cycles are very important
scientifically as they model systems that exhibit self-sustained
oscillations. In other words, these systems oscillate even in the
absence of external periodic forcing.

Fig. 2. Unstable limit cycle. Trajectories spiral away from it.

Of the countless examples that could be given, we mention
only a few: the beating of a heart; the periodic ring of a pace
maker neuron; daily rhythms in human body temperature and
hormone secretion; chemical reactions that oscillate sponta-
neously; and dangerous self-excited vibrations in bridges and
airplane wings. In each case, there is a standard oscillation of
some preferred period, waveform, and amplitude. Oscillations
are important part of electronics [2], too.

If the system is perturbed slightly, it always returns to the
standard cycle. Limit cycles are inherently nonlinear phenom-
ena; they cant occur in linear systems [7].

B. Damping

Mentioning damping is important mainly because, in a real
world, oscillations eventually stop, due to Newton’s law of
Thermodynamics (the frictional force). In electronics, there is
no ideal oscillator, too - small amount of energy is lost every
cycle, due to electric resistance.

Generally, the damping is linear either linear or nonlinear.
As a rule of thumb, the linear one is easily modeled math-
ematically, obeying known rules, while the nonlinear one is
not [1]. There are some use cases, where nonlinear damping

Fig. 3. Half-stable (or semi-stable) limit cycle. Attract trajectories from one
side and repel them from other side.

is advantageous, but the research is still ongoing about this
topic.

IV. ADVANCED STUDIES

A. Liénard Equation

A nonlinear second-order ordinary differential equation

y′′ + f(x)x′ + x = 0 (2)

This equation describes the dynamics of a system with one
degree of freedom in the presence of a linear restoring force
and nonlinear damping. The function f has properties

f(x) < 0 for small |x|
f(x) > 0 for large |x|

that is, if for small amplitudes the system absorbs energy and
for large amplitudes dissipation occurs, then in the system one
can expect self-exciting oscillations.

Liénard equation was intensely studied as it can be
used to model oscillating circuits. Under certain additional
assumptions Liénard’s theorem guarantees the uniqueness and
existence of a limit cycle for such a system.

B. Van der Pol Equation

One of the most well-known oscillator model in dynamics
is Van der Pol oscillator, which is a special case of Liénard’s
equation (2) and is described by a differential equation

y′′ − µ
(
1− y2

)
y′ + y = 0 (3)

where y is the dynamical variable and µ > 0 is a parameter.
If µ = 0, then the equation reduces to the equation of simple
harmonic motion

y′′ + y = 0

The µ parameter determines the shape of the limit cycle. As it
approaches 0, it gets the shape of a circle. On the other hand,
increasing the paramter, involves sharpening of the curves.

The Van der Pol equation (3) arises in the study of circuits
containing vacuum tubes (triode) and is derived from earlier,
Rayleigh equation [4], known also as Rayleigh-Plesset equa-
tion - an ordinary differential equation explaining the dynamics
of a spherical bubble in an infinite body of liquid.

Van der Pol oscillator is self-sustainable, relaxation os-
cillator. Self-sustainability in this context means, that the
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energy is fed into small oscillations and removed from large
oscillations. Relaxation means, that the energy is gradually
accumulating over time and then quickly released (relaxed).
In electronics jargon, the relaxation oscillator is also called
a free-running oscillator. As already explained, it does not
require neither one (monostable), nor two (bistable) inputs
for transitioning between states, it ”runs” by itself, thus free-
running.

C. Periodicity in Van der Pol’s Oscillator

Liénard’s theorem can be used to prove that the system
described by Van der Pol equation (3) has a limit cycle
[5]. If we want to visualize it, the one-dimensional form of
equation must be first transformed to the two-dimensional
form. Applying the Liénard transformation

y = x−
x3

3
−
ẋ

µ

where dot indicates the time derivative, the system can be
written in it’s two-dimensional form [3]:

ẋ = µ

(
x−

1

3
x3 − y

)
ẏ =

1

µ
x

However, this form is not well-known. Far common form
uses the transformation y = ẋ, that yields

ẋ = y

ẏ = µ
(
1− x2

)
y − x

which can be plotted onto direction field, as shown on fig. 4.
It is possible to see the stable limit cycle as well as trajectories
from both sides attracted towards it.

The Van der Pol oscillator can be forced too, however, this
work does not aim to investigate further in this direction.

V. APPLICATIONS IN ELECTRONIC CIRCUITS

This is the main section of our work. We will investigate,
what is the behavior of electrical components in circuits with
respect to time and model them with differential equations.

Resistor is a linear component. It is described by an Ohm’s
law, which states, that the voltage V across it is proportional
to the current I passing through it’s resistance R.

V = IR

Inductor is one nonlinear component. It produces a voltage
drop, that is proportional to the rate of change of the current
through it, as described by Faraday’s Law

V = L
dI

dt

Capacitor is another nonlinear component. Voltage drop
across it, is on the other hand proportional to the charge stored
in it. This behavior is derived from Coulumb’s law

V =
1

C

∫
idt

Fig. 4. Phase portrait of the unforced Van der Pol oscillator, showing a limit
cycle and the direction field Parameter µ = 1. The wxMaxima computing
software was used for this purpose.

Kirchhoff Current Law (KCL) states, that the algebraic
sum of the currents flowing into any junction of an electric
circuit must be zero.

Kirchhoff Voltage Law (KVL) states, that the algebraic
sum of the voltage drops around any closed loop in an electric
circuit must be zero.

These laws allow us to model, what is happening inside the
circuit with respect to time.

A. First-order Circuits

asfasdf

B. Second-order Circuits

adsfsa

C. Josephson Junctions

Last but not least, we mention the miscellaneous phe-
nomenon regarding nonlinear dynamics applied in the field
of electrical engineering.

Josephson junctions are superconducting devices that are
capable of generating voltage oscillations of extraordinary high
frequency, typically 1010 - 1011 cycles per second [8]. They
consist of two superconducting layers, separated by a very thin
insulator that weakly couples them, as shown on fig. 5.

Although quantum mechanics is required to explain the
origin of the Josephson effect, we can nevertheless dive into
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weak coupling

superconductor #1

superconductor #2

Fig. 5. The physical structure of a Josephson Junction. Shown for ilustration
purposes.

dynamics of Josephson junctions in classical terms. They have
been particularly useful for experimental studies of nonlinear
dynamics, because the equation governing a single junction
resembles the one of a pendulum [6].

Josephson junctions are used to detect extremely low elec-
tric potentials and are used for instance, to detect far-infrared
radiation from distant galaxies. They are also formed to arrays,
because there is a great potential seen in this configuration,
however, all the effects are yet to be fully understood.

VI. CONCLUSION

The conclusion goes here.

APPENDIX A
PROOF OF THE FIRST ZONKLAR EQUATION

Appendix one text goes here.

APPENDIX B

Appendix two text goes here.
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