Fuzzy Logic

Peter Babič

Technical University of Košice, Slovakia

18.05.2015

Presentation Outline

1 Introduction

- Crisp and Fuzzy Logic
- Fuzzy Sets

2 Applications

- Fuzzy Control
- Software

3 Final Remarks

- References
- Epilogue

Introduction to Fuzzy logic

- Fuzzy logic is an extension of multivalued logic
- Natural language rules
- Aristotle, later Lofti A. Zadeh in 1965 and 1973
- Japan, later on west

Figure 1: Lofti A. Zadeh

Fuzzy logic vs Crisp logic

Example

Carmen is 18 years old. Is she old?

Crisp¹ true/false Fuzzy true, false or the degree of *oldness*

Figure 2: The classical set theory is a subset of the theory of fuzzy sets

¹In this context referred also as a *Boolean* or *bivalent* logic

Crisp Set

Theory of Sets (formerly Classes) was conceptualized by George Cantor in 1870's.

Figure 3: Crisp set illustration. The element either is fully member of a set or is not a member at all.

Sorites Paradox

When does a heap of grains stops being heap, if we are removing one grain at a time?

Figure 4: At what point exactly does blue becomes red? Sorites paradox [4].

Bald(0)Bald(n)
ightarrow Bald(n+1) $\therefore Bald(10000)$

Fuzzy Sets

In mathematics, fuzzy sets are sets whose elements have *degrees* of membership, described by a *membership function* [1].

- Degree of membership is defined in interval² [0, 1]
- Elements can have different degree of membership to different fuzzy sets
- If the uncertainty is not handled, we talk about type-1 fuzzy sets, type-2 otherwise

²In theory, it could be higher than 1, but in practice it is almost never used

Fuzzy Set Interpretation

How do we represent *numerical* value in a fuzzy set? With the use of *linguistic variables* [2], **not** probabilities.

Figure 5: Example interpretation of fuzzy sets. At the given temperature point, we can tell that the measured medium is "not hot", "slightly warm" and "almost cold". It does not mean that the chance the water is cold is 75%.

Definition

Let U be the universe of discourse and x be the element in it. The membership function f^A assigning degree of membership μ_A :

$$f^A(x):\in U o \mu_A(x)\in [0,1]$$

Definition

A fuzzy set A is expressed as a set of ordered pairs (tuples), given that $\mu_A(x)$ is a degree, to which x a member of A:

$$A=\{(x,\mu_A(x))\,|\,x\in U\}$$

Standard Fuzzy Set Operations

Given that $A, B \in U$ and u is an element in universe U:

 $\begin{array}{l} \text{Complement} \ \mu_A(u) = 1 - \mu_A(u) \\ \text{Intersection} \ \mu_{A \cap B}(u) = min\{\mu_A(u), \mu_B(u)\} \\ \text{Union} \ \mu_{A \cup B}(u) = max\{\mu_A(u), \mu_B(u)\} \end{array}$

Figure 6: The complement $\mu_{\bar{A}}$, the intersection $\mu_{A\cap B}$ and the union $\mu_{A\cup B}$ (green).

Fuzzy Set Operations Truth Tables

Table 1: The truth tables for AND, OR and NOT operations

Α	В	min(A,B)
0	0	0
0	1	0
1	0	0
1	1	1

Α	В	max(A,B)
0	0	0
0	1	1
1	0	1
1	1	1

It is no coincidence, that these truth tables for binary fuzzy sets are identical to their Boolean counterparts³.

³DeMorgan's law, associativity, comutativity and distributivity also apply.

Fuzzy logic

Triangular Norm (T-norm)

A T-norm is a **continuous** function $T:[0,1]\times [0,1] \to [0,1]$, satisfying these axioms:

Neutrality⁴ T(a, 1) = aCommutativity T(a, b) = T(b, a)Monotonicity $T(a, b) \leq T(c, d)$ if $a \leq c$ and $b \leq d$ Associativity T(a, T(b, c)) = T(T(a, b), c)

T-norm is used to customize the fuzzy **intersection** (conjunction). The fuzzy **union** (disjunction) uses the S-norm (or T-conorm).

⁴Also referred to as a *boundary condition*.

The Most Common T-norms

 $\mathsf{T}_{\min}(a,b) = \min\{a,b\}$

Figure 7: Minimum (Gödel) T-norm is the most common one

Fuzzy logic

The Most Common T-norms

 $\mathsf{T}_{\mathsf{prod}}(a,b) = a \cdot b$

Figure 8: product T-norm

Fuzzy logic

The Most Common T-norms

 $\mathsf{T}_{\mathsf{Luk}}(a,b) = max\{0, a+b-1\}$

Figure 9: Łukasiewics T-norm

Fuzzy Control

- The wider application of the fuzzy logic [3]
- Easier to mechanize tasks that are already successfully performed by humans

Figure 10: Block diagram of a fuzzy control

Fuzzy Inference Engine

Figure 11: Process of a fuzzy control. The most used method for defuzzification is *center of gravity* (centroid).

Fuzzy Control Applications

- Camera autofocus by Canon
- Increased effectivity of Mutsushita vacuum robots
- Mitsubishi air conditioner with higher efficiency and lower sensors
- Handwriting recognition, elevator systems, self-balancing robots

The fuzzy control systems are commonly used [6] where there are not enough resources for highly advanced systems like **PID**⁵ **controller**, **Artificial neural network** or **Genetic algorithm** [5].

⁵Proportional-integral-derivative

MATLAB Fuzzy Toolbox Introduction

- Provides a complete set of functions to design an implement various fuzzy logic processes [7]
- Major fuzzy logic operation-fuzzification, defuzzification, and the fuzzy inference
- Can be implemented using the Graphical User Interface (GUI)

Fuz	zy	lo	gic	
L,	٩р	oli	ca	tior

MATLAB Fuzzy Toolbox

Features:

- It provides tools to create and edit fuzzy inference system (FIS).
- Allows integrating fuzzy systems into simulation with Simulink.
- It is possible to create stand-alone C programs that call on fuzzy systems
- MATLAB Fuzzy Toolbox Tool Categories:
 - Command line functions
 - Graphical or interactive tools
 - Simulink blocks

MATLAB Fuzzy Toolbox I

Fuzzy logic

- Applications

MATLAB Fuzzy Toolbox II

EUZZV 1	aric
I UZZ y IV	Seic.

Applications

MATLAB Fuzzy Toolbox III

Membership Function Editor : juggler						
File Edit View						
FIS Variables	Membership function plots					
	out1mf					
x hit theta	out1mf out1mf					
	out1mf out1mf					
Project_angle	out1mf out1mf					
	out1mf out1mf					
	output variable "theta"					
Current variable	Current Membership Function					
Name theta	Name out1mf	Ш				
Type output	Type	-				
Range [0.0]	Params [-0.02185 -0.5 0.3146]					
Display Range	Help Close					
Ready						

Fuzzy logic		
Applications		
Software		

MATLAB Fuzzy Toolbox IV

MATLAB Fuzzy Toolbox V

Fuzzy	logic

MATLAB Fuzzy Toolbox VI

Is Fuzzy Logic a Viable Option?

The widespread use, amount of knowledge accumulated and countless tools and literature available proof it as **yes**.

Fuzzy logic				
	Final	Remarks		
	- Re	forences		

References I

- J.J. Buckley and E. Eslami. An Introduction to Fuzzy Logic and Fuzzy Sets. Advances in Intelligent and Soft Computing. Physica-Verlag HD, 2002, p. 21. ISBN: 9783790814477.
- H.H. Lieb. Linguistic Variables: Towards a unified theory of linguistic variation. Current Issues in Linguistic Theory. John Benjamins Publishing Company, 1993, p. 144. ISBN: 9789027277039.
- [3] E. Lughofer. Evolving Fuzzy Systems Methodologies, Advanced Concepts and Applications. Studies in Fuzziness and Soft Computing. Springer Berlin Heidelberg, 2011, p. 269. ISBN: 9783642180873.
- [4] M.P. Podosky. Vagueness, Bivalence and the Sorites Paradox. Monash University, 1985.

References II

- [5] s. Rajasekaran. Neural networks, Fuzzy logic and Genetic algorithm: Synthesis and applications (with cd). PHI Learning, 2003. ISBN: 9788120321861.
- [6] T.J. Ross. Fuzzy Logic with Engineering Applications. Wiley, 2009. ISBN: 9780470748510.
- S.N. Sivanandam, S. Sumathi, and S.N. Deepa. Introduction to Fuzzy Logic using MATLAB. Springer Berlin Heidelberg, 2006. ISBN: 9783540357810.

Fuzzy logic		
Final Remarks		
Enilogue		

Thank you \cdot ¡Gracias! \cdot Ďakujem